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Abstract   

 

Numerical methods for mathematical model of heart excitation are considered, which is used to simulate the 

process of changing the field in two domains corresponding to the heart. The alteration of the potential in the 

heart is described by the reaction diffusion equation. They are solved by Backward Time Central Space (BTCS) 

scheme and Crank-Nicolson scheme. Moreover the reaction terms implicitly have good stability properties. 

Managing such methods can find the ways to provide suitable approximations and can compare with the other 

methods. 
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1. INTRODUCTION  

 

Cardiac muscle is a type of automatic stringy muscle establish in the walls and basis of the heart. It is one of 

three major types of muscle, the other being smooth muscle and skeletal (Denisov and Kalinin, 2010). Heart 

failure (HF) is a chronic disease characterized by the disability of the heart to pump an enough volume of blood 

to reach the request of the different stalk systems. In the heart, electrical excitation propagates through 

diffusively coupled cardiac cells and subsequently results in contraction and force generation. Electrical cardiac 

cells may in turn change electrophysiological properties of the tissue, action potential duration, or induce after-

depolarization resulting in premature beats. This model consists of reaction-diffusion equations describing 

cardiac electrophysiology, equations explaining the tissue mechanics.  

 

Numerical simulations indicate that mechanical deformation may result in spiral wave drift and subsequent 

breakup. Mathematical modelling is an important role in the study of electrophysiological processes in the heart. 

The mathematical report of this problem on the basis of available cardiac muscle excitation models leads to the 

problem for evolutionary partial differential equations. It is a condition representing the end-phase of a swarm of 

other cardiac diseases without a curative nurture. Once diagnosed, the rest of the patients’ life to improve their 

life quality and survival require the medication. On these days, it seems the success in treating other heart 

conditions like heart disease, and arrhythmias are increased due to the rash of heart failure which helps the 

patients have longer lives. Simulation and modelling are being used as tools for studying the cardiac electrical 

activity. Cardiac model, as dynamic activity equation, are used in explanation of membrane action potentials. 

Those models are composed of unit cells assigned with an individual action potential with different 

characteristics ranging from a step function to a simple rectangular function in order to describe the details of 

potential phases and physiological cells (Van De Vosse, 2003). 
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Electrophysiological processes in the cardiac muscle are characterized by the kind of the transmembrane 

potential in the cellular membranes and by the generation of an electric field in the environment (Van De Vosse, 

2003). A big group of monodomain models can be explained by the following problems: 

 

               )      ))     )        ]                                                (1.1) 

    (     ))     )        ]                                                                         (1.2) 

     )     )                                                                                                           (1.3) 

     )                                                                                                                     (1.4) 

 

Here,   is a domain in the three-dimensional space corresponding to the cardiac muscle, 

   is the boundary of    
     )is the transmembrane potential, 

      )is the density of the transmembrane ionic current, 

  is the specific electroconductivity coefficient, 

     ) and $     )are the activation functions, 

   ) is the transmembrane potential at the initial time of the cardiac muscle excitation, 

  is the duration of the cardiac cycle. 

 

In the research we want to use methods of partial differential equation. The analytical solutions are difficult or 

impossible to obtain and solutions must be approximated numerically. To approximate the model by finite 

differences, we divide the closed domain by a set of lines parallel to the spatial and time axes to form a grid or a 

mesh. We shall assume, for simplicity, that the sets of lines are equally spaced such that the distance between 

crossing points is    and    . Our models are calculated by Backward Time Central Space (BTCS) and Crank-

Nicolson (CN) schemes. We have to compare the solutions in order find a good method. 

2. PRELIMINARIES 

 
In this part, we give some definitions, notations and some useful results that will be used. Throughout this 

research, we let   be the set of all real numbers and   be the set of all natural numbers. 

 

2.1 Reaction-Diffusion equations  

 

Reaction-diffusion (RD) equations, happened physically in systems consisting of many interacting components 

are normally used to describe formation phenomena of biological, chemical and physical systems. The 

important ingredients of all these models are in the form: 

           )                                                                               (2.1) 

 

Where,  
       ) is a vector of concentration variables,    ) describes a local reaction kinetics and  denotes a 

diagonal diffusion coefficient matrix. Therefore, the system is the combination of isotropic and uniform so that 

  is represented by a scalar matrix (Van De Vosse, 2003). Suppose that the initial distribution      ) is a 

function of a space interval         ) 

 

2.2 Finite difference approximation 

 

Let    )be a function of variable  , it will be assumed to be smooth, meaning that we can differentiate the 

function many times and each derivative are well defined bounded functions over an interval containing a set of 

points of interest   (Denisov and Kalinin, 2010). The finite difference approximation of the derivative of  can 

be written by: 

   
       

  
                                                                    (2.2) 

Where,      )is continuous solution (exact solution).   
 
  is approximate numerical solution. 
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3. MAIN RESULTS 

 
In this part, we review methods for formulating partial differential equations based on the random field 

representations. 

 

The deviation between variants of monodomain models are normally in the way of activation functions 

     )and      )are particularized. These models are based on a strictly style of the properties of membrane 

ionic channels in the frameworks of the Hodgkin-Huxley theory. 

In the second group of models, the functions      )and      )are specified using empirical formulas. 

Equations (3.1)-(3.3) describe two phases of the electrophysiological process depolarization and repolarization. 

If we examine of the first (depolarization) phase that is the electrophysiological processes 

 at        ] (   
 

 
)  We may set      )     In this case; the model of the cardiac muscle excitation 

becomes simple and takes the form: 

 
 

               )  )     )        ]                                               (3.1) 

                                                                                                           (3.2) 

     )      )                                                                                                  (3.3) 

 

 
3.1 Backward Time Central Space scheme 
 

The explicit schemes are simple but they are only conditionally stable. On the other hand, implicit methods is 

typically unconditionally stable and find a solution by solving equations involving the present state of the 

models and the later one (Causon and  Mingham, 2010). Use the finite difference approximations with 

         (     ))                                                                                 (3.4) 

We have: 

    
 

   
 

  
  

  
   

    
 
   

   

   ) 
                                                                                       (3.5) 

    
 

    
   

      )  
 
    

   
  (  

 
)                                                (3.6) 

Where,   
   

   ) 
  and       . 

From the Neumann boundary condition  
  

  
    )   , we can write (3.6) in by matrix from as: 

 
 

 

3.2 Crank-Nicolson scheme 

 
Combining the stability of the implicit method with the accuracy of a method that is second-order in space and 

in time that is possible and achieved by averaging explicit, Forward Time Central Space (FTCS) and implicit 

BTCS schemes. Combine finite difference an approximation becomes: 

 

         (     ))                                                                               (3.7) 

Use the finite difference approximations with Eq. (3.7), becomes 
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Where,     
   

   ) 
 . 

      
   

      )    
 

      
   

    
   

      )  
 
    

   
  (  

 
)                                            (3.10) 

 

 We can write by metrix: 

 

 

 
4. EXAMPLE  

 
In this section, there is an example to show how this method works for diffusion system. We use Eq. (3.1-3.3) to 

simulate model. 

 
              )             

     )       )    
     )             
     )           

The exact solution is: 

     )          )   

 
         ) 

The numerical solution of this mathematical model by BTCS and Cranks-Nicolson method is shown in table 4.1 

and figure 4.1-4.2. 
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Table 4.1. The solutions of BTCS, Crank-Nicolson schemes and exact. Where, T=15. 

 

x BTCS Crank-Nicolson Exact 

0.0001 0.00344484650 0.00129045 0.00010000000 

0.0002 0.00117347660 0.00119292 0.00005194080 

0.0003 0.00057740610 0.00084828 0.00001471550 

0.0004 0.00046644430 0.00064273 0.00000370590 

0.0005 0.00051560530 0.00058458 0.00000087490 

0.0006 0.00060347990 0.00059895 0.00000019830 

0.0007 0.00070076270 0.00061504 0.00000004370 

0.0008 0.00080016330 0.00057618 0.00000000940 

0.0009 0.00090003490 0.00044897 0.00000000200 

0.001 0.00000000350 0.00024277 0.00000000040 
 

Table 4.2. The error of BTCS and Crank-Nicolson schemes. 

 

x 
Absolute error of 

BTCS 
Absolute error of 
Crank-Nicolson 

0.0001 0.0033448465 0.0011904480 

0.0002 0.0011215358 0.0011409824 

0.0003 0.0005626906 0.0008335601 

0.0004 0.0004627384 0.0006390281 

0.0005 0.0005147303 0.0005837093 

0.0006 0.0006032816 0.0005987501 

0.0007 0.0007007190 0.0006149994 

0.0008 0.0008001539 0.0005761750 

0.0009 0.0009000329 0.0004489665 

0.001 0.0000000031 0.0002427647 
 

Table 4.1 is explained the potential in cardiac excitation. One specific period of time; the potential is decreasing. 

From the previous table expresses the solution of Crank-Nicolson is closer to exact solution than BTCS scheme. 

Table 4.2 shows the error of Crank-Nicolson scheme that get the result which better than BTCS scheme. We 

also possible to measure the absolute different        between vectors  and   

 Moreover, we get root mean square of BTCS is 0.0013 and Crank-Nicolson is 0.0007. We can explain that both 

of these errors can apply to use with our model. 

 

 
 

Fig 4.1 show the solutions that solved by BTCS. We show it to compare the potentials and times. 
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Fig 4.2 shows the solutions that solved by Crank-Nicolson. We show it to compare the potentials and times. 

 

 

The system of nonlinear reaction-diffusion equations is solved by BTCS scheme and Crank-Nicolson scheme. 

These figures show comparison of the simulated transmembrane potential. From the model, we have to fix   in 

the overtime and the potential is lower. According to the ECG puts on body that means we have to fix space on 

body. 

 

5. CONCLUSION 

 
The constructed implicit finite difference scheme can be directly applied to solve the transformed (system with 

diffusion terms to system without diffusion terms) reaction diffusion system. After that, the solutions of the 

reaction diffusion system are obtained by applying inverse of the transformation. The results of the numerical 

experiments presented here show that the proposed numerical method for solving the reaction diffusion can use 

both of BTCS and Crank-Nicolson. 
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